Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth‐related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hostsin silicoand found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses ofCandidatusMethanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon‐degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long‐term observations enhance our understanding of soil viruses in the context of climate‐relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.more » « less
-
Abstract Our knowledge of viral sequence space has exploded with advancing sequencing technologies and large-scale sampling and analytical efforts. Though archaea are important and abundant prokaryotes in many systems, our knowledge of archaeal viruses outside of extreme environments is limited. This largely stems from the lack of a robust, high-throughput, and systematic way to distinguish between bacterial and archaeal viruses in datasets of curated viruses. Here we upgrade our prior text-based tool (MArVD) via training and testing a random forest machine learning algorithm against a newly curated dataset of archaeal viruses. After optimization, MArVD2 presented a significant improvement over its predecessor in terms of scalability, usability, and flexibility, and will allow user-defined custom training datasets as archaeal virus discovery progresses. Benchmarking showed that a model trained with viral sequences from the hypersaline, marine, and hot spring environments correctly classified 85% of the archaeal viruses with a false detection rate below 2% using a random forest prediction threshold of 80% in a separate benchmarking dataset from the same habitats.more » « less
-
Abstract Climate change is disproportionately warming northern peatlands, which may release large carbon stores via increased microbial activity. While there are many unknowns about such microbial responses, virus roles are especially poorly characterized with studies to date largely restricted to “bycatch” from bulk metagenomes. Here, we used optimized viral particle purification techniques on 20 samples along a highly contextualized peatland permafrost thaw gradient, extracted and sequenced viral particle DNA using two library kits to capture single-stranded (ssDNA) and double-stranded (dsDNA) virus genomes (40 total viromes), and explored their diversity and potential ecosystem impacts. Both kits recovered similar dsDNA virus numbers, but only one also captured thousands of ssDNA viruses. Combining these data, we explored population-level ecology using genomic representation from 9,560 viral operational taxonomic units (vOTUs); nearly a 4-fold expansion from permafrost-associated soils, and 97% of which were novel when compared against large datasets from soils, oceans, and the human gut.In silicopredictions identified putative hosts for 44% (4,149 dsDNA + 17 ssDNA) of the identified vOTUs spanning 2 eukaryotic, 12 archaeal, and 30 bacterial phyla. The recovered vOTUs encoded 1,684 putative auxiliary metabolic genes (AMGs) and other metabolic genes carried by ∼10% of detected vOTUs, of which 46% were related to carbon processing and 644 were novel. These AMGs grouped into five functional categories and 11 subcategories, and nearly half (47%) of the AMGs were involved in carbon utilization. Of these, 112 vOTUs encoded 123 glycoside hydrolases spanning 15 types involved in the degradation of polysaccharides (e.g., cellulose) to monosaccharides (e.g., galactose), or further monosaccharide degradation, which suggests virus involvement in myriad metabolisms including fermentation and central carbon metabolism. These findings expand the scope of viral roles in microbial carbon processing and suggest viruses may be critical for understanding the fate of soil organic carbon in peatlands.more » « less
An official website of the United States government
